English to Malayalam Entertainment Domain Parallel Corpora

The dataset consists of bilingual sentence-aligned corpora for the Entertainment domain from English to Malayalam and vice versa.

Category

Parallel Corpora

Volume

100K+ Corpus

Last Updated

June 2022

Number of participants

200+ people

Get this AI Dataset

Get Dataset Btn

About This OTS Dataset

About Gradiet Line

Introduction

Welcome to the English-Malayalam Bilingual Parallel Corpora dataset for the Entertainment domain! This meticulously curated dataset offers a rich collection of bilingual text data, translated between English and Malayalam, providing a valuable resource for developing entertainment domain-specific language models and machine translation engines.

Dataset Content

  • Volume and Diversity:
  • Extensive Dataset: Over 100000 sentences offering a robust dataset for various applications.
  • Translator Diversity: Contributions from more than 200 native translators ensure a wide range of linguistic styles and interpretations.
  • Sentence Diversity:
  • Word Count: Sentences range from 7 to 25 words, suitable for various computational linguistic applications.
  • Syntactic Variety: The corpus encompasses sentences with varying syntactic structures, including simple, compound, and complex sentences.
  • Interrogative and Imperative Forms: The corpus includes sentences in interrogative (question) and imperative (command) forms, reflecting the conversational nature of the entertainment industry.
  • Affirmative and Negative Statements: Both affirmative and negative statements are represented in the corpus, ensuring different polarities.
  • Passive and Active Voice: The corpus features sentences written in both active and passive voice, ensuring different perspectives and representations of information.
  • Idiomatic Expressions and Figurative Language: The corpus incorporates idiomatic expressions, metaphors, and figurative language commonly used in the entertainment domain.
  • Discourse Markers and Connectives: The corpus includes a wide range of discourse markers and connectives, such as conjunctions, transitional phrases, and logical connectors, which are crucial for capturing the logical flow and coherence of the text.
  • Cross Translation: The dataset includes a cross-translation which means a part of the dataset is translated from English to Malayalam and another part is translated from Malayalam to English to improve bi-directional translation capabilities.
  • Domain Specific Content

    This Parallel Corpus is meticulously curated to capture the linguistic intricacies and domain-specific nuances inherent to the entertainment industry.

  • Industry-Tailored Terminology: The corpus encompasses a comprehensive lexicon of entertainment-specific terminology, ranging from movies, serials, series, and TV shows to industry jargon.
  • Authentic Industry Expressions: Beyond technical terminology, the corpus captures the authentic expressions, idioms, and colloquialisms used within the entertainment industry.
  • Contexts Specific to Entertainment: The corpus encompasses a wide range of contexts specific to the entertainment domain, including movie and TV show summaries, music reviews, celebrity news, and more.
  • Cross-Domain Applicability: While the primary focus is on the entertainment sector, the corpus also includes relevant cross-domain content, such as general culture, lifestyle, and technology terms.
  • Format and Structure

  • Multiple Formats: Available in Excel format, with the ability to convert to JSON, TMX, XML, XLIFF, XLS, and other industry-standard formats, facilitating ease of use and integration.
  • Structure: It contains information like Serial Number, Unique ID, Source Sentence, Source Sentence Word Count, Target Sentence, Target Sentence Word Count.
  • Usage and Application

  • Machine Translation and Language Localization: It serves as a valuable training resource for developing robust machine translation engines tailored to the entertainment domain.
  • NLP Applications: Enabling the creation and improvement of predictive keyboards, spell checkers, grammar checkers, and text/speech understanding systems.
  • Auto Dubbing: Facilitating the automated dubbing of audio-visual content, such as movies and TV shows, by leveraging the parallel corpus to generate accurate translations and lip-sync alignments.
  • LLM Training: Training, fine-tuning, and enhancing bilingual capabilities of LLMs.
  • Secure and Ethical Collection

  • Our proprietary parallel corpus platform “Yugo” was used throughout the process of this dataset creation.
  • Throughout the dataset creation process, the data remained within our secure platform and did not leave our environment, ensuring data security and confidentiality.
  • It does not include any personally identifiable information, which makes the dataset safe to use.
  • The source or translated content included in the corpus does not infringe upon any copyrights or intellectual property rights. The corpus comprises original content created specifically for this purpose.
  • Update and Customization

    To ensure the continued relevance and effectiveness of this Entertainment Domain Parallel Corpora Dataset for robust language models and machine translation engines, we are committed to regular updates.

  • Customization & Custom Collection Options:
  • Annotation: Various types of annotations like Part-of-speech tagging, Named Entity Recognition (NER), Sentiment Analysis, Intent Classification, Multiple Translation Ranking, or any other application-specific annotations can be made available upon request.
  • Classification: Classification of corpus based on type of sentence, and subdomain can be made available.
  • Custom Collection: Custom collection can be done on specific requirements in any language pair and domain.
  • License

    This English-Malayalam Parallel Corpus dataset for Entertainment is created by FutureBeeAI and is available for commercial use.

    Use Cases

    Use of parallel corpus dataset in MT Engine

    MT Engine

    Use of parallel corpus dataset in Language modeling

    Language Model

    Use of parallel corpus dataset in Predictive keyboards

    Predictive Keyboards

    Use of parallel corpora dataset in Spell checker

    Spell Check

    Use of parallel corpus dataset in grammar correction tool

    Grammar Correction

    Use of parallel corpus dataset in Text/Speech System

    Text/speech Systems

    Dataset Sample(s)

    Sample Line

    Samples will be available soon!

    Contact us to get the samples immediately for this dataset.

    Contact Us

    Audio Arrow BtnAudio Arrow Btn Black
    Audio Promp 2 Bg

    Dataset Details

    Details Headline

    Dataset type

    Text Corpus Data

    Volume

    100K+ Sentences

    Media type

    Text

    Language pair

    English-Malayalam

    File Details

    Details Headline

    Type

    Bilingual

    Word count

    7 to 25 words per asset

    Format

    XLSX, TMX, XML, XLIFF, XLS

    Annotation

    NA

    Need datasets for a specific AI/ML use case? Don’t worry, we’ve got you covered! 👍

    Contact Us

    Arrow BtnArrow Btn Black
    Promp 2 Bg